## Other aspects of the use of humic substances in livestock

Alena Lorencová Martina Trčková Miroslav Cigánek

#### Výzkumný ústav veterinárního lékařství, v.v.i. Veterinary Research Institute Brno



Hustopeče 18.3. 2016

## The group of Animal Nutrition

Head of the department: Ing. Martina Trckova, Ph.D. trckova@vri.cz



#### **Expertise**

- impact of different types of feed additives on animal health and performance
- prevention and treatment of diarrhoea in weaned piglets caused by enterotoxigenic *Escherichia coli*

#### Services and consulting services

- serum biochemical profiles (Mindray BS200 biochemical analyser)
- determination of essential nutrients in feed (AOAC method)
- experiments using experimental animals and collection of samples (blood, organs, tissue, feces)



## **Research project**

The use of humic substances as a feed additive for the prevention of diarrhoeal diseases of piglets and improvement of pig performance 2012 – 2016

#### The aim of the project

- effects and safety of humates with trace elements in prophylaxis of diarrhoea and growth efficiency improvement in pigs
- technological parameters suitable for their production from natural raw materials





# Effect of humic substances on lipid and fatty acid profile


#### HS in diet of animals:

- decrease serum cholesterol (Samudovska and Demeterova 2010; Mista et al. 2012; Ozturk et al. 2012)
- affect unsaturated (U), saturated (S) FA and
   UFA:SFA ratio in meat (Wang et al. 2008)
- redistribution of lipids:
- reduce backfat thickness (Wang et al. 2008)

improve marbling of meat (Wang et al. 2008)



# Effect of HS on lipid and FA profile in weaned piglets



C.....basal diet

ZnO2.5.... basal diet + 2.5 g ZnO/kg

ZnO1.7+HNa(f)...basal diet + 1.7 g ZnO + 20.0 g HNa/kg

ZnO1.7+HNa(w)..basal diet + 1.7 g ZnO/kg and drinking water with 0.2% HNa



## Conclusions

- Cholesterol, HDL and LDL were not affected by HNa supplementation
- Partial replacement of ZnO by HNa in feed provided significantly lower serum TGC, lower total amount of FA in serum in comparison with ZnO2.5
- Partial replacements of ZnO by HNa positive effect on PUFA n6/n3 ratio in serum in comparison with ZnO2.5





## Mycotoxins (MT)

structurally diverse secondary fungal metabolites



> 300: deoxynivalenol, zearalenon, fumonisins, T-2 toxin, ochratoxin A, aflatoxin (B1)

2015: 84% from 8271 of agricultural commodities contaminated with MT

|        | Afla | ZEN | DON | T-2 | FUM | ΟΤΑ |
|--------|------|-----|-----|-----|-----|-----|
| EUROPE | 11%  | 64% | 77% | 42% | 54% | 26% |

corn, dried distillers grain





(Mycotoxin report, Biomin, 2015)

## Mould and MT hazard in the feed chain

Aspergillus, Penicillium, Fusarium...

> mould growth-alterations in the nutritional content

### > production of MT

- ↓feed intake, ↓weight gain, carcinogenic, mutagenic, teratogenic, oestrogenic, immunotoxic, hepatotoxic, nephrotoxic, neurotoxic, reprotoxic...
- presence in tissues OTA (kidney, liver), milk-AFM1
- synergistic effect, subclinical effect
- masked/bound mycotoxins!





## Legislative regulations

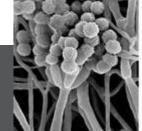
 DIRECTIVE 2002/32/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on undesirable substances in animal feed (aflatoxin B1)
 maximum content in mg/kg

- COMMISSION RECOMMENDATION on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding (2006/576/EC)
- guidance value in mg/kg





## Strategies for detoxification/inactivation of MT


- 1. prevention of fungal infection
- 2. nutritional feed aditives
- 3. physical, chemical, biological methods for reduction of the contamination by MT



BIOTRANSFORMATION, BIODEGRADATION of MT microorganisms and their enzymes (*Eubacterium* spp., *Trichosporon* spp., *Nocardia* spp., *Flavobacterium* aurantiacum)

ADSORBTION - high affinity to MT, \$\sqrt{dissociation}\$, high binding capacity
multi-binding capacity, mix of adsorbents +++



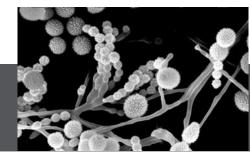


## **NON-NUTRITIVE ADSORBTIVE MATERIALS**

**INORGANIC**: bentonites, montmorillonites, zeolites, modified clays...

BUT

- adsorbtion of trace elements
- aflatoxins +++, other MT limited
- contaminants
- **ORGANIC:** activated charcoal, syntetic polymers, humic substances, esterified glucomannan (cell wall of yeast), yeast, lactic acid bacteria, dietary fibres
- efficient against a larger range of MT
- biodegradable, (immunostimulants)
   PROMISING FURTHER RESEARCH IS NEEDED!




# Regulation (EC) No 1831/2003 on additives for use in animal nutrition

#### **Technological additives**

- Substances for the reduction of the contamination of feed by
- deoxynivalenol strain DSM 11798 of the Coriobacteriaceae family (pigs)
- fumonisins fumonisin esterase produced by Komagataella pastoris (pigs)
- aflatoxin B1, fumonisins bentonite
- (ruminants, poultry, pigs)





# Humic substances-natural complexing compounds

- reactive groups-hydroxyl, phenol, carboxyl, methoxy...
- large specific **surface**, hydrophilic, flexible
- strong adsorbtion (microbial toxins, haevy metals, mutagens) ion exchange, chelation, complexation activity
- high mycotoxin adsorbtion capacity-reduction of its bioavailability (zearalenon, aflatoxins)



FULVIC ACID

HUMIC ACID

## Humic substances in prevention of mycotoxicosis in animals

#### GOOD ADSORBTION

- **oxihumate, humate AF B1 broilers** (van Rensburg et al., 2006; Ghari et al., 2010)
- sodium humate AF B1 *in vitro* (Ye et al., 2009)
- **natural humic acid polymers ZEN** *in vitro* (Sabater-Vilar et al., 2007; de Mil et al., 2015)
- humic acid polymers ZEN, OTA adsorbtion at pH 3, desorbtion at pH 8.4 (Santos et al., 2011)

#### INEFFICIENT ADSORBTION

• **DON** (Sabater-Vilar et al., 2007; Dänicke et al., 2012)





## Humic substances as MT binders in animal diet

- **†albumin** and **total protein** levels
- ↓ enzyme activities (AST, LDH, GGT)
- in serum



- reduction of the immunotoxic effect of MT
- protective effect on the liver and bursa of Fabricius
- not adsorb other nutrients
- antioxidants, growth promoter, antimicrobial effect, improvement of gut health



## Study of the effects of MT binders

- IN VITRO studies pre-screening
- Adsorbent binding capacity adsorbtion isotherms Effect of
- ✓ pH (3-8), time
- ✓ amount of adsorbent, MT
- ✓ feed (adsorbtion of nutrient and MT)
- toxic effect of binders
- gastrointestinal models
- **Desorbtion** at different pH
- IN VIVO studies effectiveness in animals



## NEW RESEARCH PROJECT COLLABORATION... ???

## Výzkumný ústav veterinárního lékařství, v.v.i. Veterinary Research Institute, Brno lorencova@vri.cz trckova@vri.cz

